Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Ngọc Hân

Giải hệ phương trình:

a) \(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=10\\\left(x+y\right)\left(xy+1\right)=1\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x^4+y^4=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)

Nguyễn Việt Lâm
13 tháng 5 2020 lúc 12:52

a/ \(\left\{{}\begin{matrix}xy+1+x+y=10\\\left(x+y\right)\left(xy+1\right)=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=10\\ab=1\end{matrix}\right.\)

Theo Viet đảo, a và b là nghiệm:

\(t^2-10t+1=0\) \(\Rightarrow\left[{}\begin{matrix}t=5+2\sqrt{6}\\t=5-2\sqrt{6}\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=5+2\sqrt{6}\\xy=4-2\sqrt{6}\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm:

\(t^2-\left(5+2\sqrt{6}\right)t+4-2\sqrt{6}=0\) (bấm máy, số xấu quá)

TH2: \(\left\{{}\begin{matrix}x+y=5-2\sqrt{6}\\xy=4+2\sqrt{6}\end{matrix}\right.\)

Ta có \(\left(5-2\sqrt{6}\right)^2-4\left(4+2\sqrt{6}\right)=33-28\sqrt{6}< 0\) nên vô nghiệm

Nguyễn Việt Lâm
13 tháng 5 2020 lúc 12:58

b/ \(\left\{{}\begin{matrix}x^4+y^4=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y^2\right)^2-2x^2y^2=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+y^2=a>0\\xy=b\end{matrix}\right.\) với \(a\ge2b\) hệ trở thành:

\(\left\{{}\begin{matrix}a^2-2b^2=97\\ab=78\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2-2b^2=97\\b=\frac{78}{a}\end{matrix}\right.\)

\(\Rightarrow a^2-2\left(\frac{78}{a}\right)^2=97\)

\(\Leftrightarrow a^4-97a^2-12168=0\Rightarrow\left[{}\begin{matrix}a^2=169\\a^2=-72\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=13\Rightarrow b=6\\a=-13< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=13\\xy=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=13\\y=\frac{6}{x}\end{matrix}\right.\)

\(\Rightarrow x^2+\frac{36}{x^2}=13\Leftrightarrow x^4-13x^2+36=0\) \(\Rightarrow\left[{}\begin{matrix}x^2=9\\x^2=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=2\\x=-3\Rightarrow y=-2\\x=2\Rightarrow y=3\\x=-2\Rightarrow y=-3\end{matrix}\right.\)


Các câu hỏi tương tự
Trx Bình
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
Mỹ Lệ
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết
Kiều Ngọc Tú Anh
Xem chi tiết
poppy Trang
Xem chi tiết
Kun ZERO
Xem chi tiết