Nhân vế với vế:
\(\left(4x+y\right)\left(x^3+y^3-xy^2\right)=4x^4+y^4\)
\(\Leftrightarrow xy\left(x-y\right)\left(x-3y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\x=y\\x=3y\end{matrix}\right.\) Thay vào pt đầu ...
Nhân vế với vế:
\(\left(4x+y\right)\left(x^3+y^3-xy^2\right)=4x^4+y^4\)
\(\Leftrightarrow xy\left(x-y\right)\left(x-3y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\x=y\\x=3y\end{matrix}\right.\) Thay vào pt đầu ...
Giải hệ:
\(\left\{{}\begin{matrix}x^3+y^3-xy^2=1\\4x^4+y^4=4x+y\end{matrix}\right.\)
Giải hệ
1) \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2x^2-xy-1=0\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}y\left(4x^3+1\right)=3\\y^3\left(3x-1\right)=4\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^3+y^3-xy^2=1\\4x^4+y^4=4x+y\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3+y^3-xy^2=1\\4x^4+y^4=4x+y\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3+y^3-xy^2=1\\4x^4+y^4=4x+y\end{matrix}\right.\)
Giải hệ pt
1/\(\left\{{}\begin{matrix}4x\sqrt{y+1}+8x=\left(4x^2-4x-3\right)\sqrt{x+1}\\\dfrac{x}{x+1}+x^2=\left(y+2\right)\sqrt{\left(x+1\right)\left(y+1\right)}\end{matrix}\right.\)
2/\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)\(\left\{{}\begin{matrix}x\sqrt{y^2+6}+y\sqrt{x^2+3}=7xy\\x\sqrt{x^2+3}+y\sqrt{y^2+6}=x^2+y^2+2\end{matrix}\right.\)
3/\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\left(2x+y-1\right)\left(\sqrt{x+3}+\sqrt{xy}+\sqrt{x}\right)=8\sqrt{x}\\\left(\sqrt{x+3}+\sqrt{xy}\right)^2+xy=2x\left(6-x\right)\end{matrix}\right.\)
4/\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)\(\left\{{}\begin{matrix}\sqrt{xy+x+2}+\sqrt{x^2+x}-4\sqrt{x}=0\\xy+x^2+2=x\left(\sqrt{xy+2}+3\right)\end{matrix}\right.\)
m.n giúp e mấy bài này vs ạ!!
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+y^2-xy+4y+1=0\\y\left(7-x^2-y^2+2xy\right)=2\left(x^2+1\right)\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{matrix}\right.\)
giải hệ
\(\left\{{}\begin{matrix}\dfrac{\left(x-y\right)^2-1}{xy}-\dfrac{2\left(x+y-1\right)}{x+y}=-4\\4x^2+5y+\sqrt{x+y-1}+6\sqrt{x}=13\end{matrix}\right.\)