cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^4\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.AC\(^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
Cho tam giác ABC có: góc B = 90 độ + góc C , nội tiếp đường tròn O. Qua B kẻ đường thẳng vuông góc với BC cắt đường tròn O tại I, tiếp tuyến của đường tròn O kẻ từ A cắt BC tại H. Chứng minh :
a) AH vuông góc BC
b) AB^2 + AC^2 = 4R^2
cho tam giác ABCvuông tai A đường cao AH chia cạnh huyền BC thành 2 đoạn BH=3,6cn và
HC= 6,4cm trên cạnh AC lấy điểm M (M≠A,M≠C) kẻ AD vuông góc với MB tại D
1,TÍNH AB . AC .GÓC B .GÓC C(làm tròn đến phút)
2 cm BD*BM=BH*BC
3 CM 4 điểm A B C D cùng thuộc 1 đường tròn. CM AC là tiếp tuyến của đường tròn đó
Bài 1: Cho △ABC có độ dài các cạnh AB= \(2\sqrt{10}\)cm; BC= \(2\sqrt{6}\)cm; AC= 8cm
a) △ABC là △ gì? Vì sao?
b) Vẽ đường vuông góc với AB tại A cắt đường cao BH tại D. Tính AD; HD
Bài 2: Cho △ABC, biết
a) Â=90 độ, góc B =48 độ, AB=18cm b) góc B=90 độ, góc C=25 độ, AC=12cm
c) góc C= 90 độ, CA= 2\(\sqrt{5}\)cm, AB= 6cm d) Â =90độ, góc B=42 độ, BC=22cm
cho tam giác ABC có AB = 6cm, AC = 4,5 cm, BC = 7,5 cm
a, Chứng minh tam giác ABC vuông
b, Tính góc B, góc C, đường cao AH
Bài 5 : (3 điểm ) Cho tam giác ABC vuông tại A có AC = 12 cm và BC = 13 cm Đường cao AH b/Kẻ HD vuông góc với AB tại D , kẻ HE vuông góc với AC tại E . Chứng minh : HB.HC=DA.DB+EA.EC