a ) \(\left|x+5\right|=3x+1\) ( 1 )
+ ) \(x+5=x+5.\) Khi \(x\ge-5\)
\(\left(1\right)\Leftrightarrow x+5=3x+1\)
\(\Leftrightarrow-2x=-4\Leftrightarrow x=2\) ( TM )
+ ) \(x+5=-x-5.\) Khi \(x< -5\)
\(\left(1\right)\Leftrightarrow-x-5=3x+1\)
\(\Leftrightarrow-4x=6\)
\(\Leftrightarrow x=-\dfrac{3}{2}\)( KTM )
Vậy ..........
b ) \(\dfrac{3\left(x-1\right)}{4}+1\ge\dfrac{x+2}{3}\)
\(\Leftrightarrow9x-9+12\ge4x+8\)
\(\Leftrightarrow5x\ge5\)
\(\Leftrightarrow x\ge1\)
Vậy ...........
c ) \(\dfrac{x-2}{x+1}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\left(1\right)\)
ĐKXĐ : \(x\ne2;x\ne-2.\)
\(\left(1\right)\Leftrightarrow\dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow\left(x-2\right)^2-3\left(x+2\right)=2x-22\)
\(\Leftrightarrow x^2-4x+4-3x-6-2x+22=0\)
\(\Leftrightarrow x^2-9x+20=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\left(TMĐKXĐ\right)\)
Vậy .........
\(\Leftrightarrow\)