a. (x+4)(\(\frac{1}{4}\)x-1)=0
=>[\(\begin{matrix}x+4=0\\\frac{1}{4}x-1=0\end{matrix}\)
=>[\(\begin{matrix}x=-4\\\frac{1}{4}x=1\end{matrix}\)
=>[\(\begin{matrix}x=-4\left(n\right)\\x=4\left(n\right)\end{matrix}\)
S={-4;4}
b.
⇔\(\frac{x^2+4x+4}{x^2-4}\) -\(\frac{x^2-4x+4}{x^2-4}\) =\(\frac{4}{x^2-4}\)
=>\(x^2+4x+4-x^2+4x-4-4=0\)
⇔ 8x - 4=0
⇔x=\(\frac{1}{2}\) (n)
S=\(\left\{\frac{1}{2}\right\}\)
c.
=>2x-10< 5x+5
=>-3x <15
=> x > 5 (n)
{x/x>5}