giải pt
a) \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}=1\)
b) \(\sqrt{3x^2-5x+7}+\sqrt{3x^2-7x+2}=3\)
c) \(\sqrt{x^2+3x+2}+\sqrt{x^2+6x+5}=\sqrt{2x^2+9x+7}\)
d) \(\sqrt{x^2-1}-\sqrt{x^2+3}+\sqrt{5-x}=0\)
e) \(\left(x-1\right)\sqrt{1+x\sqrt{x^2+4}}=x^2-1\)
giải pt
a) \(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
b) \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
c) \(\sqrt{3x^2-5x+7}+\sqrt{3x^2-7x+2}=3\)
d) \(\sqrt{x^2+3x+2}=\sqrt{2x^2+9x+7}-\sqrt{x^2+6x+5}\)
giải pt
a) \(\sqrt{x^2+2}+\sqrt{x^2+7}=\sqrt{x^2+x+3}+\sqrt{x^2+x+8}\)
b) \(\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}\)
c) \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}\)
d) \(\sqrt{x+7}+\sqrt{4x+1}=\sqrt{5x+6}+2\sqrt{2x+3}\)
e) \(\sqrt{x+4+2\sqrt{x+3}}=x+4\)
giải pt
a) \(\sqrt[3]{x+6}+\sqrt{x-1}=x^2-1\)
b) \(\sqrt[3]{x-9}+2x^2+3x=\sqrt{5x-1}+1\)
c) \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
d) \(\sqrt{x+1}-2\sqrt{4-x}=\frac{5\left(x-3\right)}{\sqrt{2x^2+18}}\)
e) \(x^3+5x^2+6x=\left(x+2\right)\left(\sqrt{2x+2}+\sqrt{5-x}\right)\)
giải pt
a) \(2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{5x-2}{x}\)
b) \(3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{5x-3}{2x}+9\)
c) \(\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{12-9x}{x}+6\)
d) \(\frac{x-1}{x}-2\sqrt{\frac{x-1}{x}}=3\)
e) \(\sqrt{\frac{x}{x-1}}+\sqrt{\frac{x-1}{x}}=\frac{3}{\sqrt{2}}\)
f) \(\sqrt{x-\frac{1}{x}}=\frac{1}{\sqrt{x}}-\sqrt{x}\)
giải pt
a) \(3\sqrt{x}+\frac{3}{2\sqrt{x}}=2x+\frac{1}{2x}-7\)
b) \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
c) \(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
d) \(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
e) \(x^2+2x\sqrt{x-\frac{1}{x}}=3x+1\)
f) \(x^2-6x+x\sqrt{\frac{x^2-6}{x}}-6=0\)
g) \(\frac{3x^2}{3+\sqrt{x}}+6+2\sqrt{x}=5x\)
h) \(\frac{x^2}{4-3\sqrt{x}}+8=3\left(x+2\sqrt{x}\right)\)
\(a,2x^2-9x+3+\sqrt{3x^2-7x+1}=0\)
b)\(\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\)
c)\(\text{4x^3-9x^2+7x-(3x-1)\sqrt{3x-2}=0}\)
d)\(2\sqrt{x-1}+\sqrt{5x-1}=x^2+1\)
e)\(\sqrt{x+2}+\sqrt{5x+6}+2\sqrt{8x+9}=4x^2\)
f)\(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\)
giải pt sau
a, \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+4\right)\)
b, 2(1-x) \(\sqrt{x^2+2x-1}=x^2-2x-1\)
c, \(x^3+1=2\sqrt[3]{2x-1}\)
d, \(x^2-3x+1=\frac{-\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)
Giải phương trình:
a) \(\sqrt{x+2}=\sqrt{2x+1}+x\sqrt{x+2}\)
b) \(2+\sqrt{3-8x}=6x+\sqrt{4x-1}\)
c) \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-1}\)
d) \(1+\sqrt{x^2+4x}=\sqrt{x^2-3x+3}+\sqrt{2x^2+x+2}\)
e) \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
f) \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
g) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
h) \(\sqrt{2x^2+x-1}+\sqrt{3x^2+x-1}=\sqrt{x^2+4x-3}+\sqrt{2x^2+4x-3}\)