|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
Ta có:
\(\dfrac{2}{x-3}+\dfrac{3}{x+3}=\dfrac{3x+5}{x^2-9}\)
\(\dfrac{2\left(x+3\right)+3\left(x-3\right)}{x^2-9}=\dfrac{3x+5}{x^2-9}\)
\(5x-4=3x+5\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\)
a) Ta có: |x-9|=2x+5
\(\Leftrightarrow\left[{}\begin{matrix}x-9=2x+5\left(x\ge9\right)\\9-x=2x+5\left(x< 9\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-9-2x-5=0\\9-x-2x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x-14=0\\-3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=14\\-3x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-14\left(loại\right)\\x=\dfrac{4}{3}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{4}{3}\right\}\)