Bài 2: Phương trình lượng giác cơ bản

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thương Thương

Giải các phương trình sau:

1) \(2\cos4x-3=0\)

2) \(cos5x+2=0\)

3) \(cos2x+0,7=0\)

4) \(cos^22x-\dfrac{1}{4}=0\)

Hồng Phúc
12 tháng 7 2021 lúc 21:45

1.

\(2cos4x-3=0\)

\(\Leftrightarrow cos4x=\dfrac{3}{2}\)

Mà \(cos4x\in\left[-1;1\right]\)

\(\Rightarrow\) phương trình vô nghiệm.

2.

\(cos5x+2=0\)

\(\Leftrightarrow cos5x=-2\)

Mà \(cos5x\in\left[-1;1\right]\)

\(\Rightarrow\) phương trình vô nghiệm.

Hồng Phúc
12 tháng 7 2021 lúc 21:51

3.

\(cos2x+0,7=0\)

\(\Leftrightarrow cos2x=-\dfrac{7}{10}\)

\(\Leftrightarrow2x=\pm arccos\left(-\dfrac{7}{10}\right)+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{arccos\left(-\dfrac{7}{10}\right)}{2}+k\pi\)

4.

\(cos^22x-\dfrac{1}{4}=0\)

\(\Leftrightarrow cos^22x=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-\dfrac{1}{2}\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\pm\dfrac{2\pi}{3}+k2\pi\\2x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k\pi\\x=\pm\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyễn Thúc Minh Phước
Xem chi tiết
James Pham
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sonyeondan Bangtan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Gia Khanh
Xem chi tiết
tran duc huy
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Dương Linh
Xem chi tiết