a)\(\dfrac{201-x}{99}+\dfrac{203-x}{97}=\dfrac{205-x}{95}+3=0\)
<=>\(\left(\dfrac{201-x}{99}+1\right)+\left(\dfrac{203-x}{97}+1\right)+\left(\dfrac{205-x}{95}+1\right)=0\)
<=>\(\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}=\dfrac{205-x+95}{95}=0\)
<=> \(\dfrac{300-x}{99}+\dfrac{300-x}{97}=\dfrac{300-x}{95}=0\)
<=> \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
<=> 300 - x = 0
<=> x = 300
b) \(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
<=> \(\dfrac{2-x}{2002}+1=\left(\dfrac{1-x}{2003}+1\right)+\left(\dfrac{x}{2004}+1\right)\){Cộng cả hai vế của phương trình với 2}
<=> \(\dfrac{2-x+2002}{2002}=\dfrac{1-x+2003}{2003}+\dfrac{-x+2004}{2004}\)
<=> \(\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)
<=> \(\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)
<=> \(\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)
<=> 2004 - x = 0
<=> x = 2004.
b) \(\dfrac{2-x}{2002}+\dfrac{x}{2004}-1=\dfrac{1-x}{2003}\)
\(\Leftrightarrow\dfrac{2-x}{2002}+1+\dfrac{x}{2004}-1=\dfrac{1-x}{2003}+1\)( cộng 2 vế cho 1)
\(\Leftrightarrow\dfrac{2-x+2002}{2002}+\dfrac{x-2004}{2004}=\dfrac{1-x+2003}{2003}\)
\(\Leftrightarrow\dfrac{2004-x}{2002}+\dfrac{x-2004}{2004}=\dfrac{2004-x}{2003}\)
\(\Leftrightarrow-\dfrac{x-2004}{2002}+\dfrac{x-2004}{2004}+\dfrac{x-2004}{2003}=0\)
\(\Leftrightarrow\left(x-2004\right)\left(\dfrac{-1}{2002}+\dfrac{1}{2004}+\dfrac{1}{2003}\right)=0\)
\(\Rightarrow x=2004\) do \(\left(\dfrac{-1}{2002}+\dfrac{1}{2004}+\dfrac{1}{2003}\ne0\right)\)