a, \(\Leftrightarrow3x^2-3+5=3x^2+2x-3x-2\)
\(\Leftrightarrow3x^2-3x-2x+3x=-2+3-5\)
<=>x=-4
b, \(\Leftrightarrow\dfrac{x+4}{5}-\dfrac{5x}{5}+\dfrac{20}{5}=\dfrac{2x}{6}-\dfrac{3\left(x-2\right)}{6}\)
\(\Leftrightarrow\dfrac{x+4-5x+20}{5}=\dfrac{2x-3x+6}{6}\)
\(\Leftrightarrow\dfrac{6\left(-4x+24\right)}{30}=\dfrac{5\left(-x+6\right)}{30}\)
<=>-24x+144=-5x+30
<=>-5x+24x=144-30
<=>19x=114
<=>x=6
a ) <=> 3x2 - 3 + 5 = 3x2 + 2x - 3x - 2
<=> 3x2 - 3x2 - 2x + 3x = -2 - 5 + 3
<=> x = - 4
Vậy s = \(\left\{-4\right\}\)
b)<=> \(\dfrac{6\left(x+4\right)}{30}-\dfrac{30\left(x+4\right)}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)
<=> 6x + 24 - 30x - 120 = 10x - 15x + 30
<=> 6x -30x - 10x + 15x = 30 - 24 + 120
<=> -19x = 126
<=> x =-6,6
Vậy s = \(\left\{-6,6\right\}\)
a ) <=> 3x2 - 3 + 5 = 3x2 + 2x - 3x - 2
<=> 3x2 - 3x2 - 2x + 3x = -2 - 5 + 3
<=> x = - 4
Vậy s = \(\left\{-4\right\}\)
b)<=> 6x + 24 - 30x - 120 = 10x - 15x + 30
<=> 6x + 24 - 30x - 120 = 10x - 15x + 30
<=> -19x = 126
<=> x =-6,6
c, \(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)
\(\Leftrightarrow\dfrac{29-x+21}{21}+\dfrac{27-x+23}{23}+\dfrac{25-x+25}{25}+\dfrac{23-x+27}{27}+\dfrac{21-x+29}{29}=0\)
\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{50-x}{27}+\dfrac{50-x}{29}=0\)
\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)
Mà 1/21+1/23+1/25+1/27+1/29 khác 0
<=>50-x=0<=>x=50