a/ \(\left(x+\dfrac{1}{9}\right)\left(2x-5\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\dfrac{1}{9}>0\\2x-5< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+\dfrac{1}{9}< 0\\2x-\dfrac{1}{5}>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-\dfrac{1}{9}\\x< \dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< -\dfrac{1}{9}\\x>\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\dfrac{-1}{9}< x< \dfrac{5}{2}\)
Biểu diễn:
b/ \(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\left(4x-1\right)\left(x^2+12\right)\left(4-x\right)>0\)
vì \(x^2+12\ge12>0\) nên:
\(bpt\Leftrightarrow\left(4x-1\right)\left(4-x\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x-1>0\\4-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}4x-1< 0\\4-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{1}{4}\\x>4\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\dfrac{1}{4}< x< 4\)
Vậy..............
biểu diễn:........(tự biểu diễn nha bn)
c/ \(x^2-6x+9< 0\)
\(\Leftrightarrow\left(x-3\right)^2< 0\) (vô lí)
=> bpt vô nghiệm
\(a.\left(x+\dfrac{1}{9}\right)\left(2x-5\right)< 0\)
Lập bảng xét dấu , ta có :
Vậy , nghiệm của BPT : \(\dfrac{-1}{9}< x< \dfrac{5}{2}\)
b) ( 4x - 1)( x2 + 12)( 4 - x) > 0
Do : x2 + 12 > 0
⇒ ( 4x - 1)( 4 - x) > 0
Lập bảng xét dấu , ta có :
Vậy , nghiệm của BPT : \(\dfrac{1}{4}< x< 4\)
c) x2 - 6x + 9 < 0
⇔ ( x - 3)2 < 0 ( vô lý )
Vậy , BPT vô nghiệm
P/s : Bạn tự biểu diễn nhé.