- Với \(-1\le x\le0\Rightarrow\left\{{}\begin{matrix}VT>0\\VP\le0\end{matrix}\right.\) BPT hiển nhiên đúng
- Với \(0< x< 1\) hai vế đều dương, bình phương:
\(\Leftrightarrow1+\sqrt{1-x^2}\ge x^2\left(1+4\left(1-x^2\right)+4\sqrt{1-x^2}\right)\)
\(\Leftrightarrow1-x^2+\sqrt{1-x^2}-4x^2\left(1-x^2\right)-4x^2\sqrt{1-x^2}\ge0\)
\(\Leftrightarrow\left(1-4x^2\right)\left(1-x^2\right)+\sqrt{1-x^2}\left(1-4x^2\right)\ge0\)
\(\Leftrightarrow\left(1-4x^2\right)\left(1-x^2+\sqrt{1-x^2}\right)\ge0\)
\(\Leftrightarrow1-4x^2\ge0\) (do ngoặc sau luôn dương)
\(\Rightarrow0< x\le\frac{1}{2}\)
Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{1}{2}\)