ĐKXĐ: \(\left[{}\begin{matrix}-2\le x< 0\\x\ge2\end{matrix}\right.\)
- Với \(-2\le x< 0\) BPT hiển nhiên đúng
- Với \(x\ge2\)
\(\Leftrightarrow2\sqrt{x-2}+\sqrt{2\left(x-2\right)\left(x+2\right)}\ge x\sqrt{x}\)
\(\Leftrightarrow\sqrt{x-2}\left(2+\sqrt{2\left(x+2\right)}\right)\ge x\sqrt{x}\)
\(\Leftrightarrow\sqrt{x-2}\left(\frac{\left(2x+4\right)-4}{\sqrt{2x+4}-2}\right)\ge x\sqrt{x}\)
\(\Leftrightarrow\frac{2\sqrt{x-2}}{\sqrt{2x+4}-2}\ge\sqrt{x}\Leftrightarrow2\sqrt{x-2}\ge\sqrt{2x^2+4x}-2\sqrt{x}\)
\(\Leftrightarrow2\sqrt{x-2}+2\sqrt{x}\ge\sqrt{2x^2+4x}\)
\(\Leftrightarrow4x-4+4\sqrt{x^2-2x}\ge x^2+2x\)
\(\Leftrightarrow x^2-2x-4\sqrt{x^2-2x}+4\le0\)
\(\Leftrightarrow\left(\sqrt{x^2-2x}-2\right)^2\le0\)
\(\Leftrightarrow\sqrt{x^2-2x}=2\Leftrightarrow x^2-2x-4=0\Rightarrow x=1+\sqrt{5}\)
Vậy nghiệm của BPT đã cho là: \(\left[{}\begin{matrix}-2\le x< 0\\x=1+\sqrt{5}\end{matrix}\right.\)