a/
Ta luôn có: \(\left(x-y\right)^2\ge0\) \(\forall x;y\)
\(\Rightarrow x^2+y^2\ge2xy\)
Áp dụng:
\(\left(a^2\right)^2+\left(b^2\right)^2\ge2a^2b^2\)
Tương tự, \(c^4+d^4\ge2c^2d^2\)
\(\Rightarrow a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\)
Lại có \(\left(ab\right)^2+\left(cd\right)^2\ge2\left(ab\right).\left(cd\right)=2abcd\)
\(\Rightarrow a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\ge2.2abcd=4abcd\)
Dấu "=" xảy ra khi \(a=b=c=d\)
b/ Biến đổi tương đương
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\frac{a^2+b^2+2}{\left(ab\right)^2+a^2+b^2+1}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(1+ab\right)\left(a^2+b^2+2\right)\ge2\left(a^2b^2+a^2+b^2+1\right)\)
\(\Leftrightarrow a^2+b^2+2+a^3b+ab^3+2ab\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow a^3b+ab^3-2a^2b^2-a^2-b^2+2ab\ge0\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\) (1)
Do \(\left\{{}\begin{matrix}a>1\\b>1\end{matrix}\right.\) \(\Rightarrow ab>1\Rightarrow ab-1>0\Rightarrow\left(1\right)\) luôn đúng
Vậy BĐT ban đầu đúng, dấu "=" xảy ra khi \(a=b\)