b)x3-2x2-4xy2+x
=x(x2-2x-4y2+1)
=x[(x2-2x+1)-4y2]
=x[(x-1)2-4y2]
=x(x-1-2y)(x-1+2y)
c) (x+2)(x+3)(x+4)(x+5)-8
=[(x+2)(x+5)][(x+3)(x+4)]-8
=(x2+5x+2x+10)(x2+4x+3x+12)-8
=(x2+7x+10)(x2+7x+12)-8
đặt x2+7x+10 =a ta có
a(a+2)-8
=a2+2a-8
=a2+4a-2a-8
=(a2+4a)-(2a+8)
=a(a+4)-2(a+4)
=(a+4)(a-2)
thay a=x2+7x+10 ta đc
(x2+7x+10+4)(x2+7x+10-2)
=(x2+7x+14)(x2+7x+8)
bài 2 x3-x2y+3x-3y
=(x3-x2y)+(3x-3y)
=x2(x-y)+3(x-y)
=(x-y)(x2+3)
a) x3 - 2x2 - 4xy2 + x
= x(x2 - 2x - 4y2 + 1)
= x[(x2 - 2x + 1) - 4y2]
= x[(x - 1)2 - 4y2]
= x(x - 1 + 2y)(x - 1 - 2y)
b) (x + 2)(x + 3)(x + 4)(x + 5) - 8
= [(x + 2)(x + 5)][(x + 3)(x + 4)] - 8
= (x2 + 5x + 2x + 10)(x2 + 4x + 3x + 12) - 8
= (x2 + 7x + 10)(x2 + 7x + 12) - 8
Thay x2 + 7x + 10 = y, ta có:
y(y + 2) - 8
= y2 + 2y - 8
= y2 - 2y + 4y - 8
= (y2 - 2y) + (4y - 8)
= y(y - 2) + 4(y - 2)
= (y + 4)(y - 2)
= (x2 + 7x + 10 + 4)(x2 + 7x + 10 - 2)
= (x2 + 7x + 14)(x2 + 7x + 8)
c) x3 - x2y + 3x - 3y
= (x3 - x2y) + (3x - 3y)
= x2(x - y) + 3(x - y)
= (x2 + 3)(x - y)
a, x3-xy2+3x-3y
= ( x3-x2y)+(3x-3y)
= x2(x-y)+3(x-y)
=(x-y)(x2+3)
b,x3-2x2-4xy2+x
=x(x2-2x-4y2+1)
=x[(x2-2x+1)-4y2]
=x[(x-1)2-(2y)2]
=x(x-1-2y)(x-1+2y)