\(\left|2x^2+5x-10\right|=2x^2+1\)
TH1: => \(2x^2+5x-10=2x^2+1\)
<=> \(2x^2-2x^2+5x=10+1\)
<=> 5x = 11
<=> x = \(\frac{11}{5}\)
TH2: \(2x^2+5x-10=-2x^2-1\)
<=> \(2x^2+2x^2+5x=10-1\)
<=> \(4x^2+5x=9\)
<=> \(4x^2+5x-9=0\)
<=> \(4x^2+9x-4x-9=0\)
<=> \(4x.\left(x-1\right)+9.\left(x-1\right)=0\)
<=> \(\left(4x+9\right)\left(x-1\right)=0\)
<=> 4x + 9 = 0 <=> \(x=\frac{-9}{4}\)
x - 1 = 0 <=> x = 1