Ta có:
\(B=\left(2x+\dfrac{5}{2}\right)^{2022}+2021\)
\(\ge0+2021=2021\)
Vậy \(B_{MIN}=2021\), đạt được khi và chỉ khi \(2x+\dfrac{5}{2}=0\Leftrightarrow2x=-\dfrac{5}{2}\Leftrightarrow x=-\dfrac{5}{4}\)
Ta có:
\(B=\left(2x+\dfrac{5}{2}\right)^{2022}+2021\)
\(\ge0+2021=2021\)
Vậy \(B_{MIN}=2021\), đạt được khi và chỉ khi \(2x+\dfrac{5}{2}=0\Leftrightarrow2x=-\dfrac{5}{2}\Leftrightarrow x=-\dfrac{5}{4}\)
Tổng các x; y ; z thỏa mãn(x-1)^2022+(2y-1)^2022+|x+2y-z|^2022 = 0 là
A. 5/2 B. 7/2 C.-5/2 D.-7/2
Giúp mik nhanh với mik đang gấp lắm :<
Giá trị cảu số hữu tỉ x thỏa mãn đẳng thức : (3x+1/5).(x-1/2) = 0 là
A. x = -1/15 và x = 1/2 B. x = 1/15 và x= -1/2
C. x= 1/2 D. x=-1/15
Tỉ số của a và b là 3/5 nếu a = 24 thì b có giá trị là
A. b = 25 B. b = 35 C. b = 30 D. b = 40
Cho a/b+c=b/c+a=c/a+b
Tính giá trị của biểu thức A=2021-b+c/a+c+a/b-a+b/c
Câu 1:
Tìm giá trị nhỏ nhất của biểu thức sau: P= 3 |x-3 | + |2y^2 + 1| - 2010
Câu 2:
Cho b= a+c/2 và 2/c= 1/b + 1/d (với a,b,c,d nguyên dương). Cmr: a/c = b/d
Câu 3:
Tìm x,y,z biết: 2x/ 3y +4z + 1= 3y/ 2x+4z+1 = 4z/2x+3y-2 = 2x+3y+4z
rút gọn rồi tính giá trị của biểu thức
a) A=5x(4x^2 -2x+1) -2x(10x^2 -5x -2) với x=15
b) B=5x(x-4y) -4y(y-5x) với x=-1/5, y=-1/2
bài 1
tìm x trong các tỉ lệ thức sau :
a, \(\frac{x-3}{x+5}=\frac{5}{7}\) b,\(\frac{7}{x-1}=\frac{x+1}{9}\)
c,\(\frac{x+4}{20}=\frac{5}{x+4}\) d,\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
bài 2
cho \(\frac{a+5}{a-5}=\frac{b+6}{b-6}\)(a khác 5, b khác 6 . chứng minh \(\frac{a}{b}=\frac{5}{6}\)
bài 3
chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{a^{2^{ }}+b^2}{c^2+d^2}=\frac{ab}{cd}\)
bài 4
cho P=\(\frac{x+2y-3z}{x-2y+3z}\). Tính giá trị của P biết các số x,y,z có tỷ lệ với các số 5;4;3
bài 5
cho các số A,B,C tỉ lệ với các số a,b,c, chứng minh rằng giá trị của biểu thức
Q=\(\frac{Ax+By+C}{ax+by+c}\) ko phụ thuộc vào x và y
giúp mik vs mn
mik sắp đi hok
tìm các số nguyên x để giá trị của biểu thức sau là số nguyên
A=x-2/3
B=5/x+3
C=x+1/x-2
Câu 1: Cho các số \(0< a_1< a_2< a_3< ...< a_{15}\). Chững minh rằng \(\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< 5\)
Câu 2: Tìm x và y biết: \(\dfrac{1+5y}{24}=\dfrac{1+7y}{7x}=\dfrac{1+9y}{2x}\)
Câu 3: Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính M = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
Câu 4: Cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\). Chứng minh: \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)
Câu 5: Cho 4 số a, b, c, d đều ≠ 0 thoả mãn \(b^2=ac\), \(c^2=bd\), \(b^3+27c^3+8d^3\) ≠ 0. Chứng minh rằng: \(\dfrac{a}{d}=\dfrac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\)
Câu 6: Cho \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\). Tính giá trị của biểu thức A = \(2016x+y^{2017}+x^{2017}\)
Câu 7: Tìm giá trị nhỏ nhất của biểu thức A biết: \(A=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+zy+zx-2000\right|\)
Câu 8: Tìm 3 số a, b, c biết: \(\dfrac{3a-2b}{4}=\dfrac{2c-4a}{3}=\dfrac{4b-3c}{2}\) và \(a+b+c=18\).