\(P=3x^2+3z^2+10y^2+10t^2+8xy+8zt+4zx+2yz+2xt\)
\(P\le5x^2+5z^2+10y^2+10t^2+8xy+8zt+2yz+2xt\)
\(P\le10+5y^2+5t^2+8xy+8zt+2yz+2xt\)
\(\left\{{}\begin{matrix}8xy=\left(2+2\sqrt{5}\right)\left[2.x.\frac{\left(\sqrt{5}-1\right)}{2}y\right]\le\left(2+2\sqrt{5}\right)\left[x^2+\left(\frac{3-\sqrt{5}}{2}\right)y^2\right]\\8zt\le\left(2+2\sqrt{5}\right)\left[z^2+\left(\frac{3-\sqrt{5}}{2}\right)t^2\right]\\2yz\le\left(\frac{\sqrt{5}+1}{2}\right)\left[z^2+\left(\frac{3-\sqrt{5}}{2}\right)y^2\right]\\2xt\le\left(\frac{\sqrt{5}+1}{2}\right)\left(x^2+\left(\frac{3-\sqrt{5}}{2}\right)t^2\right)\end{matrix}\right.\)
\(\Rightarrow P\le10+\frac{5}{2}\left(\sqrt{5}+1\right)\left(x^2+y^2+z^2+t^2\right)\le15+5\sqrt{5}\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}x=z=\sqrt{\frac{5-\sqrt{5}}{10}}\\y=t=\sqrt{\frac{5+\sqrt{5}}{10}}\end{matrix}\right.\)