\(\Rightarrow-4\le x-5\le4\)
\(\Leftrightarrow1\le x\le9\)
Có :
[ x - 5≤ 4 ; x - 5 ≥ -4
⇔[ x≤9 ; x≥1
Vậy bpt có no : 1≤ x ≤9
\(\Rightarrow-4\le x-5\le4\)
\(\Leftrightarrow1\le x\le9\)
Có :
[ x - 5≤ 4 ; x - 5 ≥ -4
⇔[ x≤9 ; x≥1
Vậy bpt có no : 1≤ x ≤9
tập nghiệm của bất pt
a) \(\left|4x-8\right|\le8\)
b) \(\left|x-5\right|\le4\). (số nghiệm nguyên|)
c) \(\left|2x+1\right|< 3x\) ( giá trị nguyên x thỏa mãn [-2017;2017]
d) \(\left|x+1\right|+\left|x\right|< 3\)
e) \(\left|2-x\right|+3x-1\le6\)
1. Tìm nghiệm nguyên: \(\left\{{}\begin{matrix}y-\left|x^2-x\right|-1\ge0\\\left|y-2\right|+\left|x+1\right|-1\le0\end{matrix}\right.\)
2. Tìm m để bpt \(\left|\dfrac{x^2-mx-1}{x^2-2x+3}\right|\le1\) có tập nghiệm bằng R
3. Tìm m để bpt \(x^2+6x\le m\left(\left|x+3\right|+1\right)\) có nghiệm.
1. Biết rằng tập nghiệm của bpt \(\sqrt{2x-4}-2\sqrt{2-x}\ge\dfrac{6x-4}{5\sqrt{x^2+1}}\) là \(\left[a;b\right]\) . Tính P=3a-2b
2. Tính tổng các giá trị nguyên dương của m để tập nghiệm của bpt \(\sqrt{\dfrac{m}{72}x^2+1}< \sqrt{x}\) có chứa đúng 2 số nguyên
Tìm m để hệ bpt có nghiệm \(\left\{{}\begin{matrix}x^2-3x+2< 0\left(S1\right)\\x+2m-5>0\left(S2\right)\end{matrix}\right.\)
( S1=(1;2) )
timf a để bpt \(x^2+\left|x-a\right|< 3\) có nghiệm âm (a là tham số)
Cho bpt \(\sqrt{x^2-3x+m}>2x+1\) tìm m để bpt có nghiệm x ∈\(\left[0;2\right]\)
Cho bpt \(-x^2-2\left(m-1\right)x+2m-1>0\) . Tìm tất cả các giá trị m để (0;1) là tập con của tập nghiệm bpt \(\left(x_1;x_2\right)\)
1.Tìm m để bpt \(2\left|x-m\right|+x^2+2>2mx\) thỏa mãn với mọi x
2. Tìm m để bpt : \(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\) có nghiệm
Tìm tập nghiệm của BPT:
\(\left|x-3\right|-\left|x+5\right|\le0\)