Ta có x/33-x/45=2/3
x/45=x/33-2/3
x/45=x/33-22/33
x/45=x-22/33
=>33x=(x-22)*45
=>33x=45x-990
=>33x-45x=-990
=>-12x=-990
=>x=82,5
Ta có x/33-x/45=2/3
x/45=x/33-2/3
x/45=x/33-22/33
x/45=x-22/33
=>33x=(x-22)*45
=>33x=45x-990
=>33x-45x=-990
=>-12x=-990
=>x=82,5
Giải phương trình
a,\(\frac{x+16}{49}+\frac{x+18}{47}=\frac{x+20}{45}-1\)
b,\(\frac{x-69}{30}+\frac{x-67}{32}+\frac{x-65}{34}=\frac{x-63}{36}+\frac{x-61}{38}+\frac{x-59}{40}\)
c,(2x-5)3-(3x-4)3+(x+1)3=0
d,(x2+3x-4)3+(3x2+7x+4)3=(4x2+10x)3
Tìm \(x\in Z\) : \(4\frac{5}{9}\div2\frac{5}{18}-7< x< \left(3\frac{1}{3}\div3,2+4,5\times1\frac{31}{45}\right)\div\left(-21\frac{1}{2}\right)\)
Giair phương trình
a,\(\frac{x+16}{49}+\frac{x+18}{47}=\frac{x+20}{45}-1\)
b,\(\frac{x-69}{30}+\frac{x-67}{32}+\frac{x-65}{34}=\frac{x-63}{36}+\frac{x-61}{38}+\frac{x-59}{40}\)
c,(2x-5)3-(3x-4)3+(x+1)3=0
d,(x2+3x-4)3+(3x2+7x+4)3=(4x2+10x)3
Tìm x : \(\frac{2x-\frac{x-1}{2}}{3}-\frac{\frac{x+1}{2}-\frac{2x-3}{3}}{2}=\frac{\frac{x-1}{2}-1}{3}-\frac{x-3}{4}\)
Tìm x: \(\frac{\frac{1}{2}-\frac{x+2}{3}}{2}-\frac{2}{3}\left(x+1\right)=\frac{1}{4}\left(1-2x\right)-\frac{\frac{1}{3}-\frac{1-x}{2}}{2}\)
quy đồng phân thức
b) \(\frac{x}{x^3-27};\frac{2x}{x^2-6x+9};\frac{1}{x^2+3x+9}\)
c) \(\frac{x-1}{2x+2};\frac{x+1}{2x-2};\frac{1}{1-x^2}\)
d)\(\frac{1}{x^3+1};\frac{3}{2x+2};\frac{2}{x^2-x+1}\)
Rút gọn : \(\frac{1}{\left(x+y\right)^3}.\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^5}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)
1) Rút gọn : \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
2) CHo \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\). CMR \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Giải các phương trình:
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
c) \(1+\frac{1}{x+2}=\frac{12}{8+x^3}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)