\(\Leftrightarrow-5< x< -\dfrac{1037}{1260}\)
=>\(x\in\left\{-4;-3;-2;-1\right\}\)
\(\Leftrightarrow-5< x< -\dfrac{1037}{1260}\)
=>\(x\in\left\{-4;-3;-2;-1\right\}\)
Tìm x : \(\frac{2\left(x-1\right)\left(x-3\right)}{3}-\frac{4\left(2x-1\right)^2}{5}=\frac{\left(1+3x\right)^2}{2}-3x\left(1-x\right)\)
Tìm tập xác định
Rút gọn A = \(\left[\left(1+\frac{1}{x^2}\right)\div\left(1+2x+x^2\right)+\frac{2}{\left(x+1\right)^3}\left(1+\frac{1}{x}\right)\right]\div\frac{x-1}{x^3}\)
Tìm tập xác định
Tìm x :a) \(\frac{x-214}{86}+\frac{x-132}{84}+\frac{x-54}{82}+\frac{x-20}{80}=10\)
b) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)
c) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
Tìm x : \(\frac{2\left(x-1\right)\left(x-3\right)}{3}-\frac{4\left(2x-1\right)^2}{5}=\frac{\left(1+3x\right)^2}{2}-3x\left(1-x\right)\)
M = \(\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right)\div\left(x-2+\frac{10-x^2}{x+2}\right)\)
a) Tìm Tập xác định
b) Rút gọn M
c) Tìm M khi \(\left|x\right|\) = \(\frac{1}{2}\)
d) Tìm \(x\in Z\) để \(M\in Z\)
Tìm x : \(\left(2-x\right):\left\{\frac{m^2-a^2}{m^3+a^3}.\left[\left(m-\frac{m^2+a^2}{a}\right)\div\left(\frac{1}{m}-\frac{1}{a}\right)\right]\right\}=1\)
a) So \(M=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)vs-\frac{1}{2}\)
b) \(N=\frac{\sqrt{x}+1}{\sqrt{x}-3}\). Tìm \(x\in Z\) để \(N\)là số nguyên dương
giải phương trình
a,\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{9\cdot10}\right)\left(x-1\right)+\frac{1}{10}x=x-\frac{9}{10}\)
b,\(\frac{x+1}{1}+\frac{2x+3}{3}+\frac{3x+5}{5}+\frac{20x+39}{39}=22+\frac{4}{3}+\frac{6}{5}+\frac{40}{39}\)
c,(x-20)+(x-19)+(x-18)+...+100+101=101