\(\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
rút gọn
a) \(\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}\)
b) \(\left(\sqrt{7-3\sqrt{5}}\right)\left(7+3\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)\)
c) \(\left(\sqrt{14}-\sqrt{10}\right)\left(6-\sqrt{35}\right)\left(\sqrt{6+\sqrt{35}}\right)\)
1/\(\frac{4\sqrt{2}}{2+\sqrt{2}}-\frac{4\sqrt{2}}{2-\sqrt{2}}\)
2/ \(\frac{2}{\sqrt{2}}+\sqrt{2}-2\sqrt{18}+\sqrt{\left(1-\sqrt{2}\right)^2}\)
3/ \(9\sqrt{\frac{2}{3}}+5\sqrt{54}-\sqrt{\frac{1}{2}-\frac{1}{3}}\)
4/ \(\sqrt{4+2\sqrt{2}}.\sqrt{4-2\sqrt{2}}.\left(\sqrt{8}-\sqrt{2}\right)\)
5/ \(\sqrt{14-6\sqrt{5}}+\sqrt{3-2\sqrt{2}}+\sqrt{7-2\sqrt{10}}\)
1) Rút gọn:
a) A = \(\sqrt{5-2\sqrt{3-\sqrt{3}}}-\sqrt{3+\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b) B = \(\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}\)
c) C = \(\dfrac{\sqrt{21+3\sqrt{5}}+\sqrt{21-3\sqrt{5}}}{\sqrt{21}+6\sqrt{11}}+\sqrt{11-6\sqrt{2}}\)
d) D = \(\left(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\right).\sqrt{\dfrac{2+2\sqrt{5}}{2+\sqrt{5}}}\)
e) E = \(\dfrac{\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}}{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right):\sqrt{\sqrt{13}+2}}\)
Rút gọn:
\(2\left(\sqrt{10}-\sqrt{2}\right)\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
Rút gọn các biểu thức sau :
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
b) \(0,2\sqrt{\left(-10\right)^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)
c) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
d) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2.\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}\)
Dạng 3.Chứng minh đẳng thức
Bài 1: CM
a)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
b)\(\left(5+\sqrt{21}\right)\left(\sqrt{14}-\sqrt{6}\right)\sqrt{5-\sqrt{21}}=8\)
Bài 2 :CM
\(\dfrac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{2}}=\sqrt{\sqrt{5}+1}\)
Bài 1 :tính giá trị của biểu thức
a) \(\left(\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{2}-1\right)\)
b) \(3\sqrt{50}-2\sqrt{75}-4\dfrac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\dfrac{1}{3}}\)
c) \(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4+2\sqrt{3}}\)
d) \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)
e)\(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}-\dfrac{20}{\sqrt{10}}\)
Bài 2 :Tính:
a) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}\)
b) \(\left(2\sqrt{3}+4\right)\left(\sqrt{3}-2\right)\)
c) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)
d)\(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}+\sqrt{6}\)
e)\(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)
f) \(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)
Chứng minh đẳng thức
a, \(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}=8}\)
b, \(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)