Bài 1 :tính giá trị của biểu thức
a) \(\left(\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{2}-1\right)\)
b) \(3\sqrt{50}-2\sqrt{75}-4\dfrac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\dfrac{1}{3}}\)
c) \(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4+2\sqrt{3}}\)
d) \(\sqrt{48-2\sqrt{135}}-\sqrt{45}+\sqrt{18}\)
e)\(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}-\dfrac{20}{\sqrt{10}}\)
Bài 2 :Tính:
a) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}\)
b) \(\left(2\sqrt{3}+4\right)\left(\sqrt{3}-2\right)\)
c) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)
d)\(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}+\sqrt{6}\)
e)\(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)
f) \(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)
Bài 2:
a: \(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=14\sqrt{2x}\)
b: \(=6-4\sqrt{3}+4\sqrt{3}-8=-2\)
c: \(=\sqrt{2}+1+2-\sqrt{2}=3\)
d: \(=\dfrac{1}{\sqrt{2}}\left(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\right)+\sqrt{6}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\right)+\sqrt{6}\)
=0
e: \(=\left(\sqrt{5}-1-2\right)\left(\sqrt{5}-1+4\right)\)
\(=\left(\sqrt{5}+3\right)\left(\sqrt{5}-3\right)\)
=5-9
=-4
f: \(=\dfrac{1}{5}\cdot5\sqrt{2}-2\cdot4\sqrt{6}-\sqrt{2}+2\sqrt{6}\)
\(=-6\sqrt{6}\)