Xét \(\frac{a^2}{b}+b=\frac{a^2+b^2}{b}\ge2a\) (do a,b > 0)
Tương tự \(\frac{b^2}{c}+c\ge2b\) , \(\frac{c^2}{a}+a\ge2c\)
Suy ra: \(\frac{a^2}{b}+b+\frac{b^2}{c}+c+\frac{c^2}{a}+a\ge2a+2b+2c\)
\(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\left(a+b+c\right)\ge\left(a+b+c\right)+\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\left(đpcm\right)\)
Chúc bạn học tốt@@