đề kiu làm chi vậy bạn
Chắc đây là bài chứng minh đẳng thức. Ta có:
\(\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\) (1)
Có lẽ đoạn \(\frac{1}{\sqrt{3}+2}\) nên sửa thành \(\frac{1}{\sqrt{3}+\sqrt{2}}\) mới đúng đề.
Áp dụng cái đẳng thức (1) trên vào, ta có:
\(\frac{1}{\sqrt{2}+\sqrt{1}}+\frac{1}{\sqrt{3}+\sqrt{2}}+...+\frac{1}{\sqrt{100}+\sqrt{99}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-\sqrt{1}=10-1=9\)