\(\frac{1-\sqrt{1}+\sqrt{2}}{1+\sqrt{1}+\sqrt{2}}+...+\frac{1-\sqrt{99}+\sqrt{100}}{1+\sqrt{99}+\sqrt{100}}\)
Tính tổng sau:
S=\(\frac{1}{2\sqrt[]{1}+1\sqrt[]{2}}+\frac{1}{3\sqrt[]{2}+2\sqrt[]{3}}+.........+\frac{1}{100\sqrt[]{99}+99\sqrt[]{100}}\)
Tính tổng : T=\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{99}-\sqrt{100}}\)
C/minh: \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\)
\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+2}+...+\frac{1}{\sqrt{100}+\sqrt{99}}=9\)
Chứng minh:
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\)
So sánh A với 1
\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
Tính:
a) \(A=\frac{1-ax}{1+ax}\sqrt{\frac{1+bx}{1-bx}}\) tại \(x=\frac{1}{a}\sqrt{\frac{2a-b}{b}}\)
b) \(B=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{99^2}+\frac{1}{100^2}}\)
c) \(C=\frac{2}{\sqrt{4-3\sqrt[4]{5}+2\sqrt{5}-\sqrt[4]{125}}}\)
Tính các tổng sau:
\(T=\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{13}+......+\dfrac{1}{\sqrt{2013}+\sqrt{2017}}}\)
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+.....+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)