a) (1 -cosx)(1+cosx)
=\(\left(1-cos^2x\right)-sin^2x\)
=\(sin^2x-sin^2x\)
=0
b) tan\(^2x\)(2cos\(^2x\)+sin\(^2x\)-1) +cos\(^2x\)
\(=tan^2x\left(cos^2x+cos^2x+sin^2x-1\right)\)+\(cos^2x\)
=\(tan^2x\left(cos^2x+1-1\right)+cós^2x\)
\(=tan^2x.cos^2x+cos^2x \)
=\(\dfrac{sin^2x}{cos^2x}.cos^2x+cos^2x\)
=\(sin^2x+cos^2x\)
=1