cho a,b,c >0 t/m a+b+c=1 tinh P=\(\dfrac{\sqrt{\left(a+bc\right)\left(b+ac\right)}}{\sqrt{c+ab}}+\dfrac{\sqrt{\left(b+ac\right)\left(c+ab\right)}}{\sqrt{a+bc}}+\dfrac{\sqrt{\left(c+ab\right)\left(a+bc\right)}}{\sqrt{b+ac}}\)
choa,b,c >0.CMR:\(\dfrac{11a^3-b^3}{4a^2+ab}+\dfrac{11b^3-c^3}{4b^2+bc}+\dfrac{11c^3-a^3}{4c^2+ac}\)
Bài 1 : Tính :
a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\)
b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\)
c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)
d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)
f) \(\left(\dfrac{1}{2-\sqrt{5}}+\dfrac{2}{\sqrt{5}-\sqrt{3}}\right):\dfrac{1}{\sqrt{21-12\sqrt{3}}}\)
Bài 2 : Rút gọn :
a) \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\)
b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
c) \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
Cho ab + ac + bc = 1; a,b,c > 0
rút gọn M = a + b-\(\sqrt{\dfrac{\left(a^2+1\right)\left(b^2+1\right)}{c^2+1}}\)
câu a \(\dfrac{\sqrt{m^3}+4\sqrt{mn^2}-4\sqrt{m^2n}}{\sqrt{m^2n}-2\sqrt{mn^2}}\left(m>0,n>0\right)\) câu b \(\dfrac{x\sqrt{x}-1}{x-1}\left(x>0\right)\) câu c \(\sqrt{50x^3y^5}-\dfrac{2y^2}{x^2}\sqrt{32x^7y}+\dfrac{3xy}{2}\sqrt{2xy^2}\)\(\left(x>0,y>0\right)\) câu d \(\left(x+2\right)\sqrt{\dfrac{2x-3}{x+2}}\) câu e \(\dfrac{a+b}{a}\times\sqrt{\dfrac{ab^2+ab^3}{a^2+2ab+b^2}}\left(a>0,b>-1\right)\)
a) \(\dfrac{1}{7+4\sqrt{3}}+\dfrac{1}{7-4\sqrt{3}}\)
b) \(\dfrac{3}{\sqrt{2}-1}+\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{3}+1}\)
c) \(\dfrac{3}{\sqrt{5}-2}-\dfrac{3}{\sqrt{5}+2}\)
bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được.
a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)
d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)
bài 2: tính giá trị các biểu thức sau:
a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b) \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)
c) \(\sqrt{12}+\sqrt{48}-\sqrt{(\sqrt{75}-\sqrt{108)}^2}\)
bài 3: thực hiện phép tính.
a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}\) b)\(\sqrt{(5-2\sqrt{6})^2}-\sqrt{(5+2\sqrt{6})^2}\)
c) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\) d) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
bài 4: thực hiện các phép tính sau.
a) \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\) b) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)
c) \(\sqrt{8}+\sqrt{72}+\sqrt{98}-5\sqrt{128}\) d) \(2\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)
bài 5: rút ngọn biểu thức với giả thiết các biểu thức chữ đều có nghĩa.
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}(x>0;y>0)\)
b) \(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}(a;b\ge0)\)
bài 6: giải các phương trình sau:\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
Tính các giá trị của các biểu thức sau:
a. A= \(\dfrac{2}{\sqrt{3}+1}+\dfrac{6}{\sqrt{3}-1}+1\)
b. B= \(\dfrac{\sqrt{\dfrac{7}{2}+\sqrt{6}}.\left(\sqrt{12}-\sqrt{2}\right)}{\sqrt{20}}\)
Cho hai bt A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)và B=\(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\)
a) rút gọn B
b)tìm x thuộc Z để C= A(B-2) có giá trị nguyên