Áp dụng BĐT Cauchy dạng engel ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{(a+b+c)^2}{a+b+c}=a+b+c(đpcm) \)
theo bđt cauchy ta có
\(\left\{{}\begin{matrix}\dfrac{a^2}{b}+b\ge2a\\\dfrac{b^2}{c}+c\ge2b\\\dfrac{c^2}{a}+a\ge2c\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)
\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
\(\Rightarrow dpcm\)