Rút gọn
\(A=\left(\dfrac{x-y}{2y-x}+\dfrac{x^2+y^2+y-2}{2y^2+xy-x^2}\right):\dfrac{4x^2+4x^2y+y^2-4}{x^2+y+xy+x}\)
Tìm GTNN của: \(C=\left(x^2+\dfrac{1}{y^2}\right).\left(y^2+\dfrac{1}{x^2}\right)\)
Rút gọn biểu thức:
\(a,\left(\dfrac{x}{xy-y^2}+\dfrac{2x-y}{xy-x^2}\right):\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(b,\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y-x}\right):\dfrac{2y}{x-y}\)
Cho x,y \(\ne\)0. Chứng minh rằng: \(\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge3\)
Cho x,y thuộc Z (x,y khác 0) CMR
\(\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)lớn hơn hoặc bằng 3
Cho các số x, y, z dương thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\)
Cmr: \(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2y+z+x\right)^2}+\dfrac{1}{\left(2z+x+y\right)^2}\ge\dfrac{3}{16}\)
Cho\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính:
\(C=\left(\dfrac{x^2+y^2}{x^2y^2}-z^2\right)\left(\dfrac{y^2+z^2}{y^2z^2}-x^2\right)\left(\dfrac{z^2+x^2}{z^2x^2}-y^2\right)\)
1) Cho P = \(\left(\dfrac{4x-x^3}{1-4x^2}-x\right):\left(\dfrac{4x^2-x^4}{1-x^2}+1\right)\)
a) rút gọn b) tìm x để P > 0
2) Cho Q = \(\left(\dfrac{x}{x^2-3x+9}-\dfrac{11}{x^3+27}+\dfrac{1}{x+3}\right):\dfrac{x^2-1}{x+3}\)
a) rút gọn b) tìm GTLN
3) Cho A = \(\dfrac{1}{\left(x-y\right)^3}\left(\dfrac{1}{x^3}-\dfrac{1}{y^3}\right)+\dfrac{3}{\left(x-y\right)^4}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{6}{\left(x-y\right)^5}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
chứng minh A là lập phương một số hữu tỉ
Thực hiện phép tính:
a) \(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)\)
b, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
c, \(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
d,\(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)