Vì \(\dfrac{10}{17}>\dfrac{1}{2}\)nên \(\dfrac{10}{17}+\dfrac{9}{16}+\dfrac{11}{34}>\dfrac{1}{2}\)
Vì \(\dfrac{10}{17}>\dfrac{1}{2}\)nên \(\dfrac{10}{17}+\dfrac{9}{16}+\dfrac{11}{34}>\dfrac{1}{2}\)
so sanh
M=\(\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)va \(\dfrac{1}{2}\)
B=\(\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}va\dfrac{9}{10}\)
C=\(\dfrac{10}{17}+\dfrac{8}{15}+\dfrac{11}{16}va2\)
Các bạn giúp với :<
Bài 1:
a, CMR: A = \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{21}{10^2.11^2}< 1\)
b, Cho B = \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+\dfrac{24}{25}+...+\dfrac{2499}{2500}.\) CMR: B không phải là số nguyên.
c, So sánh: C = \(\dfrac{2}{2^1}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{2021}{2^{2020}}\) với 3.
Tính giá trị của biểu thức
A=\(\dfrac{\dfrac{5}{12}+\dfrac{3}{4}-1}{3-\dfrac{5}{6}+\dfrac{2}{3}}\)+\(\dfrac{\dfrac{16}{5}+\dfrac{16}{7}-\dfrac{16}{9}}{\dfrac{17}{5}+\dfrac{17}{7}-\dfrac{17}{9}}\)
1. tính
a. \(\dfrac{3}{5}\)-\(\dfrac{2}{3}\)+\(\dfrac{16}{15}\)
b. (\(\dfrac{5}{6}\)-\(\dfrac{4}{5}\)):\(\dfrac{7}{30}\)-\(\dfrac{6}{7}\)
c. \(\dfrac{4}{11}\).\(\dfrac{-2}{9}\)+\(\dfrac{4}{11}\).\(\dfrac{-8}{9}\)+\(\dfrac{4}{11}\).\(\dfrac{1}{9}\)
d.\(\dfrac{-13}{10}\)-\(\dfrac{15}{16}\):\(\dfrac{-3}{4}\)+\(\dfrac{21}{25}\).\(\dfrac{-15}{28}\)
-34% : \(\dfrac{51}{16}\) - \(3\dfrac{7}{9}\) . 6,5 + (0,4)2
2. tìm x
a. \(\dfrac{x}{8}\)=\(\dfrac{-9}{6}\)
b. \(\dfrac{4}{9}\)+\(\dfrac{7}{3}\):x=\(\dfrac{1}{5}\)
c. \(\dfrac{-5}{9}\)- x=\(\dfrac{4}{3}\)
d. x +\(\dfrac{4}{17}\)=\(\dfrac{2}{34}\)
e. \(\dfrac{3}{4}\).x=\(\dfrac{7}{8}\)
f. \(5\dfrac{4}{7}\): x=11
Tính thuận tiện A=\(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}+\dfrac{15}{56}-\dfrac{17}{72}\)
1. tìm x
a. x+\(\dfrac{3}{4}\)=\(\dfrac{1}{2}\)
b. \(\dfrac{5}{3}\). x=\(\dfrac{4}{7}\)
c. \(\dfrac{2}{3}\): x=\(\dfrac{-1}{4}\)
d. \(\dfrac{5}{9}\)- x=\(\dfrac{4}{3}\)
e.x +\(\dfrac{4}{17}\)=\(\dfrac{2}{34}\)
f. \(3\dfrac{4}{7}\): x=11
CMR \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)