`(-2)/3 =x/30`
`=> 3x=-2.30`
`=>3x= -60`
`=>x=-60:3`
`=>x=-20`
\(\dfrac{-2}{3}=\dfrac{x}{30}\)
Vì `30:3=10` -> \(10\times\left(-2\right)=-20\)
`-> x=-20`
Vậy \(\dfrac{-2}{3}=\dfrac{-20}{30}\)
`(-2)/3 =x/30`
`=> 3x=-2.30`
`=>3x= -60`
`=>x=-60:3`
`=>x=-20`
\(\dfrac{-2}{3}=\dfrac{x}{30}\)
Vì `30:3=10` -> \(10\times\left(-2\right)=-20\)
`-> x=-20`
Vậy \(\dfrac{-2}{3}=\dfrac{-20}{30}\)
a) Tính A = ( 1 - \(\dfrac{1}{2}\) )( 1 - \(\dfrac{1}{3}\) ) (1-\(\dfrac{1}{4}\) ) ....(1-\(\dfrac{1}{2014}\) ) (1-\(\dfrac{1}{2015}\) ) (1-\(\dfrac{1}{2016}\) )
b)Tìm x biết \(\dfrac{x-2}{12}\) + \(\dfrac{x-2}{20}\) + \(\dfrac{x-2}{30}\)+ \(\dfrac{x-2}{42}\) + \(\dfrac{x-2}{56}\) +\(\dfrac{x-2}{72}\) = \(\dfrac{16}{9}\)
Tìm x :
\(\dfrac{1}{4}\) . \(\dfrac{2}{6}\) . \(\dfrac{3}{8}\) . \(\dfrac{4}{10}\) . .... . \(\dfrac{30}{62}\) . \(\dfrac{31}{64}\)
Tính nhanh
\(\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}...\dfrac{899}{30^2}\)
tính S=\(\dfrac{1}{30}+\dfrac{2}{48}+\dfrac{3}{88}+\dfrac{4}{165}+\dfrac{5}{300}\)
Bài1. (4điểm) Thực hiện phép tính:
a) \(A=\dfrac{3}{5}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
b) \(B=\dfrac{-1}{2}+\dfrac{-1}{6}+\dfrac{-1}{12}+\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)
Tính thuận tiện A=\(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}+\dfrac{15}{56}-\dfrac{17}{72}\)
Giúp mình giải bài này vs:
\(\dfrac{30}{100}\).x+\(\dfrac{1}{4}\) = \(\dfrac{1}{5}\) .x-\(\dfrac{1}{2}\)
(\(\dfrac{1}{7.9}\) +\(\dfrac{1}{9.11}\) +........+\(\dfrac{1}{31.33}\)).x=(0,25-3,5).\(\dfrac{27}{3}\)
Thank you!
Tìm x, biết:
a) \(\dfrac{3}{4.7}+\dfrac{3}{7.10}+....+\dfrac{3}{x\left(x+3\right)}=\dfrac{9}{38}\)
b) \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
Tính nhanh:
a) A= 1 + \(\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{1}{125}+\dfrac{1}{625}+...+\dfrac{1}{78125}\)
b) B= \(\dfrac{1}{3}+\dfrac{1}{12}+\dfrac{1}{48}+\dfrac{1}{192}+\dfrac{1}{768}+...+\dfrac{1}{36864}\)
c) M= \(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9900}\)
d) P= \(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+4+...+2018}\)