Cho các số a,b,c,d thỏa mãn 3a+2b-c-d=1; 2a+2b-c+2d= 2; 4a-2b-3c+d=3; 8a+b-6c+d=4 . Tính a+b+c+d
Cho các số a,c,b,d thỏa mãn 3a+2b-c-d=1 ;2a+2b-c+2d=2 ; 4a-2b-3c+d=3 ; 8a+b-6c+d=4 . Tính giá trị của a+b+c+d ?
Bài 1: CMR với mọi số thực a; b; c thì:
\(\left(a+b\right)^6+\left(b+c\right)^6+\left(c+a\right)^6\ge\dfrac{16}{61}\left(a^6+b^6+c^6\right)\)\
Bài 2: Cho a;b;c là các cạnh của tam giác:
CMR: \(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\)
Giúp mk với các bạn ơi
7 Chứng minh các đẳng thức sau
a) \(a^2+b^2=\left(a+b\right)^2-2ab\) ; b) \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)
c) \(a^6+b^6=\left(a^2+b^2\right)\left[\left(a^2+b^2\right)^2-3a^2b^2\right]\)
d) \(a^6-b^6=\left(a^2-b^2\right)\left[\left(a^2+b^2\right)^2-a^2b^2\right]\)
cho các số thực a,b,c,d thỏa mãn: 3a+2b-c-d=1; 2a+2b-c+2d=2;4a-2b-3c+d=3;8a+b-6c+d=4 thì giá trị của a+b+c+d là
Cho a,b,c là các số dương thỏa mãn: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=6\). CMR:
a) \(\frac{1}{a+b+2c}+\frac{1}{b+c+2a}+\frac{1}{c+a+2b}\le3\)
b) \(\frac{1}{3a+3b+2c}+\frac{1}{3a+2b+3c}+\frac{1}{2a+3b+2c}\le\frac{3}{2}\)
choa các số a,b,c,d thỏa mãn 3a+2b-c-d=1; 2a+2b-c+2d=2; 4a-2d-3c+d=3; 8a+b-6c+d=4. tính a+b+c+d
Cho các số a, b, c, d thỏa mãn \(3a+2b-c-d=1\); \(2a+2b-c+2d=2\); \(4a-2b-3c+d=3\); \(8a+b-6c+d=4\) thì giá trị của \(a+b+c+d=...\)
1/Cho 3a-b=5. Tính giá trị của \(A=\frac{5a-b}{2a+5}-\frac{3b-3a}{2b-5}\)Với 2a+5=0 và 2b-5 \(\ne\)0
2/Tìm số nguyên dương x để: P= \(x^4+x^2+1\) là số nguyên tố
Giai nhanh hộ mk nhé..mai nộp ạ