[CUỘC THI TRÍ TUỆ VICE]
Trang fanpage của cuộc thi đã có 2k like và follow đó, hãy ủng hộ chúng mình để chúng mình tiếp cận nhiều người nhất có thể nhé!
Cuộc thi Trí tuệ VICE | Facebook
*Trả lời đúng và hay sẽ được nhận 1GP/câu trả lời nha ^^
-----------------------------------------------------------
[Toán.C412-416 _ 16.3.2021]
\(\left(a-\dfrac{1}{2}\right)\left(a-1\right)\le0\)\(\Leftrightarrow\)\(3a\ge2a^2+1\)
\(P=\Sigma\dfrac{a}{b+c+1}\ge\dfrac{1}{3}\Sigma\left(\dfrac{2a^2+1}{b+c+1}\right)\ge\dfrac{1}{3}\Sigma\left(\dfrac{2a^2+1}{a+b+c+\dfrac{1}{2}}\right)\ge\dfrac{\dfrac{2}{3}\left(a+b+c\right)^2+3}{3\left(a+b+c+\dfrac{1}{2}\right)}\)
Cần CM: \(\dfrac{4t^2+18}{18t+9}\ge\dfrac{3}{4}\) ( với \(\dfrac{3}{2}\le t=a+b+c\le3\) )
\(\Leftrightarrow\)\(\left(t-\dfrac{15}{8}\right)\left(t-\dfrac{3}{2}\right)\ge0\) ( đúng với \(\dfrac{3}{2}\le t\le3\) )
...
\(P=\Sigma\dfrac{a}{b+c+1}\le\Sigma\dfrac{a}{b+c+a}=1\)
Lần sau post gõ latex cho dễ nhìn