Bài 1: Giải bất phương trình:
a) \(A^3_{x+1}+C^{x-1}_{x+1}< 14.\left(x+1\right)\)
b) \(\frac{1}{2}A^2_{2x}-A^2_x< \frac{6}{x}C^3_{x+10}\)
Bài 2: Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}C^y_x-C^{y+1}_x=0\\4C^9_x-5C^{y-1}_x=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2A^y_x+5C^y_x=90\\5A^y_x-2C^y_x=80\end{matrix}\right.\)
Tìm hệ số của \(x^4\) trong khai triển của biểu thức P = \(\left(1-x-3x^3\right)^n\) thành đa thức, biết n là số nguyên dương thoả mãn \(2\left(C^2_2+C^2_3+...+C^2_n\right)=3A^2_{n+1}\).
Giải pt \(6C^2_x-x^2+x-7=A^1_{x+2}\)
tìm hệ số x7 trong khai triển (x2 -\(\dfrac{2}{x}\))n , x≠0 biết rằng n là số nguyên dương thỏa mãn 4C3n+1 +2C2n = A3n
Tìm số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x^2}\right)^n\) ( với x khác 0) biết:
\(2A^2_n=C^2_{n-1}+C^3_{n-1}\)
tìm hệ số x6 trong khai triển (x2-x-1)n thành đa thức. Trong đó n là số nguyên dương thỏa mãn: \(C_{2n+1}^1+C^2_{2n+1}+...+C^n_{2n+1}=2^{20}-1\)
Có bao nhiêu số nguyên dương n không lớn hơn 2020 thoả mãn 14P3.(n−3)C(n−1) < 4A(n+1) ?
A. 2013. B. 2015. C. 2012. D. 2014
giải ra nha các bạn <3
\(B=C_{90}^0+2C_{90}^1+2^2C^2_{90}+....+2^{89}C_{90}^{89}+2^{90}C_{90}^{90}\) Tính B
a, tính tổng sau S=\(C^1_{14}-2C^2_{14}+3C^2_{14}-......-14C^{14}_{14}\) b, S=\(9.2^8C^0_9-8.2^7C^1_9+7.2^6C^2_9-.......+C^8_9\)