Cho pt : \(\left(x^2-2x+3\right)^2+2\left(3-m\right)\left(x^2-2x+3\right)+m^2-6m=0\). Có bao nhiêu giá trị nguyên của m thuộc \([-10;10]\) có nghiệm ?
có tất cả bao nhiêu giá trị nguyên của tham số m để pt : \(x^2-4\left|x\right|-m=0\) có 4 nghiệm phân biệt
Cho hệ pt
\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\).
a) Chứng tỏ rằng hệ pt luôn luôn có nghiệm duy nhất vs mọi m
b) Với giá trị nào của m để hệ có nghiệm (x;y) thỏa mãn hệ thức
\(x-3y=\dfrac{28}{m^2+3}-3\)
Cho \(y=f\left(x\right)=2x^2-4x-1\) Có bao nhiêu giá trị nguyên \(m\in\left[-10;10\right]\) để phương trình \(f^2\left(\left|x\right|\right)+\left(m-1\right)f\left(\left|x\right|\right)-m=0\) có 4 nghiệm phân biệt
Cho hệ pt
\(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\). Với giá trị nào của m thì hệ có nghiệm duy nhất, vô nghiệm
Tất cả các giá trị của tham số m để phương trình \(mx^4-2\left(m-1\right)x^2+\left(m-1\right)m=0\) có một nghiệm là
a) Cho hàm số \(y=x^2+2x+3+\left|x-a+1\right|\) có bao nhiêu giá trị nguyên của tham số \(a\in\left[-10;10\right]\) sao cho giá trị nhỏ nhất của hàm số lớn hơn 2
b) Tìm tất cả các giá trị của tham số m để hệ bất pt \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\) có nghiệm
c) Gọi (x;y) là nghiệm của hệ bất pt \(\left\{{}\begin{matrix}x-2y-2\le0\\4x-3y+12\ge0\\x+3y+3\ge0\\2x+y-4\le0\end{matrix}\right.\). Tìm giá trị lớn nhất của biểu thức F=4x+5y-6
1,Tìm m để pt có \(\sqrt{2x^2+mx}=3-x\)
a, 1 nghiệm
b, 2 nghiệm phân biệt
2,Tìm m để pt có 2 nghiệm phân biệt \(\sqrt{x+2}+\sqrt{6-x}-\sqrt{\left(x+2\right)\left(6-x\right)}=m\)
cho \(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}=\sqrt{x-2}\) với m bằng bao nhiêu thì pt có nghiệm duy nhất