Đặt \(t=x^2-2x+3\left(t\ge2\right)\)
Phương trình trở thành \(f\left(t\right)=t^2+2\left(3-m\right)t+m^2-6m=0\left(1\right)\)
Phương trình \(\left(1\right)\) có nghiệm \(t_1\ge t_2\ge2\) khi:
\(\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{t_1+t_2}{2}\ge2\\1.f\left(2\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3-m\right)^2-m^2+6m\ge0\\m-3\ge2\\m^2-10m+16\ge0\end{matrix}\right.\)
Giải ra tập giá trị của m rồi lấy các giá trị thuộc \(\left[-10;10\right]\)