Bài 2: Hoán vị, chỉnh hợp, tổ hợp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Đức Thắng
Có 1 đa giác đều n đỉnh nội tiếp đường tròn (O). Biết số hình chữ nhật được tạo nên từ 4 đỉnh trong số n đỉnh của đa giác đều là 15. Tìm n   
Hồng Trinh
25 tháng 5 2016 lúc 23:14

Gọi (O) là đường tròn ngoại tiếp đa giác, do đa giác có số đỉnh là số chẳn nên đường nối một đỉnh tùy ý với tâm O sẽ đi qua một đỉnh khác (ta gọi là 2 điểm xuyên tâm đối) 
do đa giác có n đỉnh nên có \(\frac{n}{2}\) cặp điểm xuyên tâm đối (hay có \(\frac{n}{2}\) đường chéo đi qua tâm O) 
với mỗi hai đường chéo qua tâm O ta được 1 hình chữ nhật   
vì có 12 hình chữ nhật và có \(\frac{n}{2}\) đường chéo nên : \(C_{\frac{n}{2}}^2=15\left(dk:n\ge4\right)\)\(\Leftrightarrow\frac{\left(\frac{n}{2}\right)!}{2!.\left(\frac{n}{2}-2\right)!}=15\) \(\Leftrightarrow\frac{\frac{n}{2}.\left(\frac{n}{2}-1\right).\left(\frac{n}{2}-2\right)!}{2.\left(\frac{n}{2}-2\right)!}=15\) \(\Leftrightarrow\frac{\frac{n}{2}.\left(\frac{n}{2}-1\right)}{2}=15\Leftrightarrow\frac{n}{2}.\left(\frac{n}{2}-1\right)=30\Leftrightarrow n^2-2n=120\Leftrightarrow\left[\begin{array}{nghiempt}n=12\\n=-10\left(loai\right)\end{array}\right.\)

Vậy \(n=12\) thỏa mãn


Các câu hỏi tương tự
Ngô Thị Ánh Vân
Xem chi tiết
Đặng Gia Ân
Xem chi tiết
Yến Đinh
Xem chi tiết
Đặng Gia Ân
Xem chi tiết
Đặng Gia Ân
Xem chi tiết
Tam Cao Duc
Xem chi tiết
Ductozaki
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Quỳnh Anh
Xem chi tiết