chứng minh đẳng thức
\(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}:\frac{1}{2x^2+y+2}=\frac{x+1}{2y-x}\)
CMR những đẳng thức sau:
a, (x-1) (\(x^2\)+x+1)= \(x^3-1\)
b, (\(x^3+x^2y+xy^2+y^3\)) (x-y)=\(x^4-y^4\)
c,\(\left(x+y+z\right)^2=x^{ }^2+y^2+z^2+2xy+2xz+2yz\)
d,\(\left(x+y+z\right)^3=x^3+y^3+x^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
9 Tìm giá trị nhỏ nhất của biểu thức: a) A=2x^2+2xy+y^2-2x+2y+2
b) B=x^4-8xy-x^3y+x^2y^2-xy^3+y^4+200
c) C=x^2+xy+y^2-3x-3y
CMR vs mọi n thì :
a, ( n2 + 3n -1 ) ( n + 2 ) - n3 + 5 ⋮ 5
b, ( 6n + 1 ) ( n + 5 ) - ( 3n + 5 ) ( 2n - 1 ) ⋮ 2
c, xn ( x = 1 ) + xn ( y - 1 ) ⋮ 13 ( x,y ∈ N, x + y ⋮ 13 )
d, ( 2x2 + x ) ( 2y2 - y ) - xy ( 4 xy - 1 ) ⋮ 2
e, ( xy - 1 ) ( x2003 + y2003 ) - ( xy + 1 ) ( x2003 - y2003 )
Chứng minh
(\(x^3\) \(+x^2y+xy^2+y^3\)) . ( x - y ) = \(x^4-y^4\)
cmr x^4+y^4 >=xy^3+x^3y với mọi x,y
tìm x,y thuộc Z,bt
a,(2x-1)(y-1)=10
b,x(y+4)-3(y+4)=19
cy(x-2)+3x-6=2
d,xy+3x-2y-7=0
e,xy-x+2(y-1)=13
f,xy-x+5y-7=0
g,x+y=x.y
Rút gọn
\(A=\left(\dfrac{x-y}{2y-x}+\dfrac{x^2+y^2+y-2}{2y^2+xy-x^2}\right):\dfrac{4x^2+4x^2y+y^2-4}{x^2+y+xy+x}\)
10 Phân tích các đa thức sau thành nhân tử:
a) 5xy(x-y)-2x+2y ; b) 6x-2y-x(y-3x)
c) x^2+4x-xy-4y ; d) 3xy+2z-6y-xz
11 Tìm x, biết: a) 4-9x^2=0 ; b) x^2+x+1/4=0 ; c) 2x(x-3)+(x-3)=0
d) 3x(x-4)-x+4=0 ; e) x^3-1/9x=0 ; f) (3x-y)^2-(x-y)^2=0