Ta có : \(n^6+n^4-2n^2=n^2\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)
\(n=2k\) hiển nhiên
\(n^2\left(n+2\right)\left(n-1\right)\left(n+1\right)=8k^2\left(n^2+2\right)\left(n-1\right)\left(n+1\right)⋮8\)
\(n=2k+1\) thì \(n^2\left(n+2\right)\left(n-1\right)\left(n+1\right)=n^2\left(n+2\right)\left(2k\right)\left(2k+2\right)\)\(=n^2\left(n^2+2\right)4.k\left(k+1\right)⋮8\)do đó \(k\left(k+1\right)⋮8\) với mọi số nguyên \(m^6+n^{\text{4}}-2n^2⋮8\) (1)⋆ thì n2(n2+2)(n−1)(n+1)=9k2(n2+2)(n−1)(n+1)⋮9
⋆ thì n2(n2+2)(n−1)(n+1)=n2(9k2+6k+3)(3k)(n+1) =9n2 (3k2+2k+1)k(n+1)⋮9
⋆ thì n2(n2+2)(n−1)(n+1)=n2(9k2−6k+3)(n−1)3k=9n2(3k2−2k+1)k(n−1)⋮9
★ Với mọi n nguyên thì n6+n4−2n2⋮9 (2)
từ (1) (2) => đpcm