Bài 4: Giải các bất phương trình sau:
e. \(\left|x-1\right|>\frac{x+1}{2}\)
f. \(\left|x-2\right|< \frac{x}{2}\)
g. \(\left|2x-5\right|\le x+1\)
h. \(\left|2x+1\right|\le x\)
i. \(\left|x-2\right|>x+1\)
Giải các phương trình và bất phương trình sau:
a) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
b) \(x^2+\left(\dfrac{x}{x-1}\right)^2=1\)
c) \(\dfrac{\sqrt{2-x}+4x-3}{x}\ge2\)
d) \(6\sqrt{\left(x-2\right)\left(x-32\right)}\le x^{^{ }2}-34x+48\)
Bài 1: Giải bpt:
a, \(2x^3+x+3>0\)
b, \(x^2\left(x^2+3x-4\right)\ge0\)
Bài 2: Hãy tìm các giá trị của m để bpt:
a, \(x^2+2\left(m-3\right)x+m^2-2m-6>0\) có nghiệm
b, \(\left(m-2\right)x^2+2\left(2m-3\right)x+5m-6\le0\) có nghiệm
6. Bất đẳng thức
Bài 9: Cho a, b, c, d, e \(\in\) R. Chứng minh các bất đẳng thức sau:
a. \(a^2+b^2+c^2\ge ab+bc+ca\)
b. \(a^2+b^2+1\ge ab+a+b\)
c. \(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
d. \(a^2+b^2+c^2\ge2\left(ab+bc-ca\right)\)
e. \(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c+1\right)\)
f. \(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)
g. \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
h. \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
i. \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\) với a, b, c >0
k. \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) với a, b, c \(\ge\)0
Cho tam thức \(f \left(x\right)=2x^2-5x+m.\) Biết \(f\left(x\right)\ge0\) . Khẳng định nào là đúng ?
\(A,m>\dfrac{8}{9}\)
\(B,m\le\dfrac{25}{8}\)
\(C,m\ge\dfrac{25}{8}\)
\(D,m>\dfrac{25}{8}\)
giải các phương trình sau
a. \(\left|\frac{4-x}{x-3}\right|=\left|\frac{2x+1}{2-x}\right|\)
b. \(10-6\left|x+1\right|=x^2-9x\)
c. \(\left|x^2-2x+3\right|=5-x\)
giải các bpt sau
a. \(\left|x^2-2x-8\right|< 2x\)
b. \(x^2+2\left|x+3\right|-10\le0\)
c. \(\left|x^2-3\right|+2x+1\ge0\)
Các bạn cho mình hỏi vì sao ở đây chọn D ạ? vì mình thấy câu A và câu C đúng?
cre: thư viện Violet
Đề : Chọn câu đúng
A. x2 ≤ 3x ⇔ x ≤ 3 C. \(\frac{x+1}{x^2}\ge0\Leftrightarrow x+1\ge0\)
B. \(\frac{1}{x}\le0\Leftrightarrow x\le1\) D. \(x+\left|x\right|\ge x\Leftrightarrow\left|x\right|\ge0\)
Cho BTP \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để BPT nghiệm đúng với mọi x\(\in\) [-1;3]
A. m\(\ge\)12
B. m \(\le\)12
C. 0\(\le\)m\(\le\)12
D. m\(\ge\)0