Em thử nhé, không chắc đâu ak. Nhất là chỗ "thực hiện n lần như vậy" em ko rõ là thực hiện n hay là n - 1 lần nữa ... Mong là đúng ạ.
Gọi biểu thức trên là A
Đặt \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}=a\left(\text{n dấu căn }\right)\)
Suy ra \(a^2-2=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\left(\text{n - 1 dấu căn }\right)\)
Suy ra \(A=\frac{2-a}{2-\left(a^2-2\right)}=\frac{2-a}{4-a^2}=\frac{2-a}{\left(2-a\right)\left(2+a\right)}=\frac{1}{2+a}\)
Ta cần chứng minh \(\frac{1}{2+a}>\frac{1}{4}\Leftrightarrow2+a< 4\Leftrightarrow a< 2\)
Thật vậy,ta có: \(a=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}\)
\(< \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}}\)
\(=\sqrt{2+\sqrt{4}}=\sqrt{4}=2\) (thực hiện n lần như vậy)
Suy ra đpcm.