\(\left(\dfrac{\sqrt{x}+2}{3\sqrt{x}}+\dfrac{2}{\sqrt{x}+1}-3\right):\dfrac{2-4\sqrt{x}}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)+2.3\sqrt{x}-3.3\sqrt{x}\left(\sqrt{x}+1\right)}{3\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{2-4\sqrt{x}}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\)
\(\dfrac{x+3\sqrt{x}+2+6\sqrt{x}-9x-9\sqrt{x}}{3\sqrt{x}\left(2-4\sqrt{x}\right)}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\dfrac{2-8x}{3\sqrt{x}\left(2-4\sqrt{x}\right)}-\dfrac{3\sqrt{x}+1-x}{3\sqrt{x}}=\dfrac{2-8x-\left(3\sqrt{x}+1-x\right)\left(2-4\sqrt{x}\right)}{3\sqrt{x}\left(2-4\sqrt{x}\right)}=\)
\(\dfrac{2-8x-6\sqrt{x}+12x-2+4\sqrt{x}+2x-4x\sqrt{x}}{3\sqrt{x}\left(2-4\sqrt{x}\right)}=\dfrac{6x-2\sqrt{x}-4x\sqrt{x}}{3\sqrt{x}\left(2-4\sqrt{x}\right)}=\dfrac{\sqrt{x}\left(6\sqrt{x}-2-4x\right)}{3\sqrt{x}\left(2-4\sqrt{x}\right)}=\dfrac{6\sqrt{x}-2-4x}{6-12\sqrt{x}}=\dfrac{-2\left(2x-3\sqrt{x}+1\right)}{6\left(1-2\sqrt{x}\right)}=\dfrac{-\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{3\left(1-2\sqrt{x}\right)}=\dfrac{\sqrt{x}-1}{3}\)