Ta có: \(A=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)
\(=1\)
\(A=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}-\dfrac{2\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\\ A=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\\ A=\dfrac{x+\sqrt{x}}{x+\sqrt{x}}=1\)
A= (( (x+3).\(\sqrt{x}\) +4x)/(x+9).\(\sqrt{x}\) +6x):((x\(\sqrt{x}\) +x)/x\(\sqrt{x}\) +3x)
A= (( (x+3).\(\sqrt{x}\) +4x/(x+9).\(\sqrt{x}\) +6x)):((\(\sqrt{x}\) +1)/\(\sqrt{x}\) +3)
A= (( (x+3).\(\sqrt{x}\) +4x/(x+9).\(\sqrt{x}\) +6x)).((\(\sqrt{x}\) +3)/\(\sqrt{x}\)+1)
A= (x^2 + 3x+4x\(\sqrt{x}\) + 3x\(\sqrt{x}\) + 9\(\sqrt{x}\) +12x)/x^2 + 9x + 6x\(\sqrt{x}\) + x\(\sqrt{x}\) +9\(\sqrt{x}\) +6x
A= (x^2 + 15x + 9\(\sqrt{x}\) +7x\(\sqrt{x}\))/x^2 + 15x +7x\(\sqrt{x}\) + 9\(\sqrt{x}\)
A=1