Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
happy time

CMR

A=\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)<\(\dfrac{1}{2}\)

Akai Haruma
8 tháng 11 2017 lúc 22:06

Lời giải:

Ta có:

\(\frac{1}{13}; \frac{1}{14}; \frac{1}{15}<\frac{1}{12}\)

\(\Rightarrow \frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}; \frac{1}{62};\frac{1}{63}< \frac{1}{60}\)

\(\Rightarrow \frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{3}{60}=\frac{1}{20}\)

Do đó:

\(A< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{9}{20}+\frac{1}{20}\)

\(\Leftrightarrow A< \frac{1}{2}\) (đpcm)

Hải Đăng
8 tháng 11 2017 lúc 22:09

Đặt biểu thức bằng A:

\(\Rightarrow A=\dfrac{1}{5}\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Ta thấy: \(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< 3.\dfrac{1}{61}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< 3.\dfrac{1}{61}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{3}{31}+\dfrac{3}{61}< \dfrac{1}{2}\left(đpcm\right)\)


Các câu hỏi tương tự
hello hello
Xem chi tiết
 nguyễn hà
Xem chi tiết
 nguyễn hà
Xem chi tiết
GOT7 JACKSON
Xem chi tiết
kaneki ken
Xem chi tiết
Đỗ Diệu Linh
Xem chi tiết
Kfkfj
Xem chi tiết
Doctor Strange
Xem chi tiết
Ruby
Xem chi tiết