Nhầm , sorry bạn nha , mk làm lại nè
a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
⇔ a2 - 4ab + 4b2 + 4ac - 8bc + 4c2 ≥ 0
⇔ ( a - 2b)2 + 4c( a - 2b) + 4c2 ≥ 0
⇔ ( a - 2b + 2c)2 ≥ 0 ( luôn đúng ∀abc)
\(a^2+4b^2+4c^2\ge4ab-4ac+8bc\\ \Leftrightarrow a^2+4b^2+4c^2-4ab+4ac-8bc\ge0\\ \Leftrightarrow\left(a-2b+2c\right)^2\ge0\)
Luôn đúng với \(\forall x\in R\)
a2 + 4b2 + 4c2 ≥ 4ab - 4ac + 8bc
⇔ a2 - 4ab + 4b2 - 4ac + 8bc + 4c2 ≥ 0
⇔ ( a - 2b)2 - 4c( a - 2b) + 4c2 ≥ 0
⇔ ( a - 2b - 2c)2 ≥ 0 ( luôn đúng ∀a,b,c )