c) <=> b+a/ab>=4/a+b
<=> (a+b)^2>=4ab (vì a,b dương)
<=>a^2+2ab+b^2>=4ab
<=>a^2-2ab+b^2>=0
<=>(a-b)^2>=0 (luôn đúng)
Dấu "=" xảy ra khi a=b
c) <=> b+a/ab>=4/a+b
<=> (a+b)^2>=4ab (vì a,b dương)
<=>a^2+2ab+b^2>=4ab
<=>a^2-2ab+b^2>=0
<=>(a-b)^2>=0 (luôn đúng)
Dấu "=" xảy ra khi a=b
chứng minh : nếu a≤b thì \(\frac{-2}{3}\)a+4≥\(-\frac{2}{3}b\)+4
cho a,b là các số dương.Chứng minh rằng:\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
CMR
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với a,b>0
1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +x2
3) Cho các số thực dương x, y, z không âm. CMR: \(\frac{a^2+2b^2}{a+2b}+\frac{b^2+2a^2}{b+2a}\ge1\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
Chứng minh rằng:
a)a2+b2-2ab≥0
b)\(\frac{a^2+b^2}{2}\)≥ab
c)a(a+2)<(a+1)2
d)m2+n2+2≥2(m+n)
e)(a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4(Với a>0,b>0)
a)Chứng tỏ rằng: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với mọi giá trị dương của a,b,x,y
b) Chứng tỏ rằng: \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\) với a,b,c dương
Cho a,b,c là các số dương thỏa mãn: \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\) = 4
Chứng minh rằng: \(\frac{1}{2a+b+c}\) + \(\frac{1}{a+2b+c}\) + \(\frac{1}{a+b+2c}\) ≤ 1
Bài toán 1. Cho a, b, c là các số thực dương thỏa mãn $latex a+b+c=3$. Chứng minh rằng
$latex \frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}+\frac{\text{2}\left( {{a}^{\text{2}}}+{{b}^{2}}+{{c}^{2}} \right)}{3}\ge 5$
Cho a,b,c là các số dương và a+b+c = 3. CM :
B= \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a,b,c >0. CMR
\(\left(2\frac{a^2}{b}+\frac{b^3}{c^2}+\frac{c^4}{a^3}\right)+\frac{2}{\left(a+b\right)^2}+\frac{1}{2c^2}\ge8\)