Bài 3: Phương trình đưa được về dạng ax + b = 0

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
๖ۣۜDũ๖ۣۜN๖ۣۜG

CMR: \(8.\left(a^4+b^4\right)\ge\left(a+b\right)^4\)

Akai Haruma
8 tháng 2 2020 lúc 13:36

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2\Rightarrow a^4+b^4\geq \frac{(a^2+b^2)^2}{2}$

$(a^2+b^2)(1+1)\geq (a+b)^2\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}$

Do đó:

$a^4+b^4\geq \frac{(a+b)^4}{8}$

$\Rightarrow 8(a^4+b^4)\geq (a+b)^4$ (đpcm)

Dấu "=" xảy ra khi $a=b$

$\Rightarrow

Khách vãng lai đã xóa

Các câu hỏi tương tự
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Thảo Nguyên
Xem chi tiết
My Nguyễn
Xem chi tiết
hoa nguyễn thị hoa
Xem chi tiết
Edogawa Conan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Thị Tú Anh 8B
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết