Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2\Rightarrow a^4+b^4\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2\Rightarrow a^2+b^2\geq \frac{(a+b)^2}{2}$
Do đó:
$a^4+b^4\geq \frac{(a+b)^4}{8}$
$\Rightarrow 8(a^4+b^4)\geq (a+b)^4$ (đpcm)
Dấu "=" xảy ra khi $a=b$
$\Rightarrow