\(7^{20}+49^{11}+343^7\)
\(=7^{20}+\left(7^2\right)^{11}+\left(7^3\right)^7\)
\(=7^{20}+7^{22}+7^{21}\)
\(=7^{20}\left(1+7^2+7\right)\)
\(=7^{20}.57⋮57\)
\(\Leftrightarrowđpcm\)
\(7^{20}+49^{11}+343^7\)
\(=7^{20}+\left(7^2\right)^{11}+\left(7^3\right)^7\)
\(=7^{20}+7^{22}+7^{21}\)
\(=7^{20}\left(1+7^2+7\right)\)
\(=7^{20}.57⋮57\)
\(\Leftrightarrowđpcm\)
CMR : \(7^{20}+49^{11}+343^7\) \(⋮\) \(57\)
CMR: \(2^{2^{4n+1}}+7\) chia hết cho 11.
CMR 76+75-74 chia hết cho 55
CMR:5 mũ 7 mũ n +7 mũ 5 mũ n chia hết cho 12
CMR : Tổng \(A=7+7^2+7^3+7^4+...+7^{4n}\) Chia hết cho 400
1. Tính giá trị biểu thức sau bằng cách hợp lí
\(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)
Tính giá trị biểu thức = cách hợp lí:
A = \(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)
1.Cho A=20172018+20182019+20192020+20202021+2018
a)CMR: A chia hết cho 10
b)CMR 0,7 . A chia hết cho 7
a, số A= 101998 -4 có chia hết cho 3 ko? có chia hết cho 9 ko?
b, CMR: A= 3638 + 4133 chia hết cho 7