\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}>\frac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(\Rightarrow VT>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)=2\left(\sqrt{n+1}-1\right)\)
\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}>\frac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(\Rightarrow VT>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)=2\left(\sqrt{n+1}-1\right)\)
CMR:
Với n thuộc N*
\(a)1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\sqrt{n}\\ b)\frac{1}{\sqrt{n}}>2\left(\sqrt{n-1}-\sqrt{n}\right)\)
CMR
\(\frac{43}{44}< \frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
Chứng mình rằng với mọi số nguyên dương n, ta có:
\(\frac{1}{2\sqrt{2}+1\sqrt{1}}+\frac{1}{3\sqrt{3}+2\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\frac{1}{\sqrt{n+1}}\)
Chứng minh: \(\frac{1}{2\sqrt{2}+1\sqrt{1}}+\frac{1}{3\sqrt{3}+2\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\frac{1}{\sqrt{n+1}}\)
Cho n ∈ N* và S(n) = \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\) . Tìm n để S(n) là 1 số hữu tỉ.
Cho n ∈ N* và S(n) = \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\) . Tìm n để S(n) là 1 số hữu tỉ.
tìm min p=\(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}+\frac{101}{n+1}\)
Tính \(Q=\frac{1}{4+\sqrt{4}}+\frac{1}{5\sqrt{2}+2\sqrt{5}}+\frac{1}{6\sqrt{3}+3\sqrt{6}}+...+\frac{1}{\left(n+3\right)\sqrt{n}+n\sqrt{n+3}}\)
$\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{x}}<2\left(n-1\right)$